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SUMMARY

A procedure is presented for the determination of airplane model structure

from flight data, including nonlinear aerodynamic effects. The procedure is

based on a modified stepwise regression (MSR) and several decision criteria.

The airplane equations of motion are in general form, with the aerodynamic

force and moment coefficients expressed as polynomials in response and input

variables. Prior to the development of the MSR, the linear and stepwise

regressions are briefly introduced. Then the problem of determining airplane

model structure is addressed. The modified stepwise regression is constructed

to force a linear model for the aerodynamic coefficient first, then add signif-

icant nonlinear terms and delete nonsignificant terms from the model. The sta-

tistical criteria in the stepwise regression for the selection of an adequate

model are complemented by the prediction sum of squares (PRESS) criterion and

by the analysis of residuals. The procedure is demonstrated in three examples

with simulated and real flight data. It is shown that the MSR with the

extended decision criteria performs better than the ordinary stepwise regres-

sion. The MSR is also applied to successfully determine the model structure

from large-amplitude maneuvers in which the data have been partitioned as a

function of angle of attack.

INTRODUCTION

The estimation of stability and control parameters from flight data has

become a standard procedure for airplanes in flight conditions where the aero-

dynamic characteristics can be describedTin linear terms only and where no

significant external disturbances are present. Interest in poststall and spin

flights has created a need to extend parameter estimation into flight regimes

where nonlinear aerodynamic effects could become pronounced. This introduces

the problem of determining how complex the model should be. Although a more

complex model can be justified for proper description of airplane motion, it

has not been clear in parameter estimation which relationship between model

complexity and measurement information would be the best. If too many param-

eters are sought from a limited amount of data, a reduced accuracy in evaluated

parameters can be expected (large covariance and/or unrealistic values of some

parameters) or attempts to identify all parameters might fail.

In the field of system identification with general application, a number

of different methods for determining an adequate model have been developed.

Simple statistical methods introduced in reference I are connected with the

determination of model order inparameter estimation for the single-input,

single-output system. Advanced statistical methods of reference 2 are more

general and applicable to multiple-input, multiple-output systems.

One of the first attempts to test the correctness of the model represent-

ing an airplane was introduced in reference 3. The appropriate statistic was

formed by a ratio of two variance estimates from residuals and repeated mea-



surements of frequency response curves. In reference 4, the analysis of resid-
uals was recommendedfor checking the accuracy of the model, and the sensitiv-
ity of a response to parameter changeswas suggested for finding the important
parameters in the model. In reference 5, a new criterion for fit error was
presented which combinedthe sumof squares of residuals and the number of
parameters in the model. Later, in reference 6, a criterion for finding an

optimal number of unknown parameters satisfying the expected model response

error was developed. All these approaches were either limited in their use or

were presented without any application to the real flight data.

A comprehensive treatment of model structure determination based on step-

wise regression is presented in reference 7. This technique was included in an

identification procedure which covered model and parameter selection, parameter

estimation, and model verification. It was applied to simulated data and, in

limited extent, to the flight data. The extension of the research is covered

by reference 8 where the review of various criteria for the selection of the

"best" model is also included. An approach similar to that mentioned in refer-

ence 8 was used in reference 9 for the analysis of flight data from various

maneuvers. The estimates obtained were compared with wind-tunnel data and

theoretical predictions. Various degrees of agreement were obtained. The

formulation of global models for aerodynamic coefficients was attempted, but no

comparison of measured and predicted responses was given.

The purpose of this report is to reexamine the applicability of stepwise

regression to the determination of airplane model structure from flight data.

The emphasis is given to the development and interpretation of criteria which

would enable the researcher to select the "best" model for a given test run and

to the verification of the model selected. The report starts with a short

description of the linear and stepwise regression. Then the problem of deter-

mining an adequate model for an airplane is discussed and the stepwise regres-

sion, complemented by a constraint and several decision criteria, is used for

selecting the model. The entire procedure for model structure determination

is first tested on several sets of computer-generated data with different

measurement-noise characteristics. Then, the real flight-test data are ana-

lyzed and the results are verified. It is shown that the resulting technique

can be used with assurance in determining the structure of nonlinear models for

poststall flights.
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SYMBOLS AND ABBREVIATIONS

model parameters for intermediate step in stepwise regression

longitudinal, lateral, and vertical accelerations, g units

= pS_/4m

wing span, m

rolling-moment coefficient, Mx/qSb

pitching-moment coefficient, My/qS_
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yawing-moment coefficient, Mz/qsb

longitudinal-force coefficient, Fx/qS

lateral-force coefficient, Fy/qS

vertical-force coefficient, Fz/qS

wing mean aerodynamic chord, m

expectation operator

F-statistic

F-statistic used in partial F-test

forces along longitudinal, lateral, and vertical body axes,

respectively, N

2
acceleration due to gravity, m/sec

null and alternative hypotheses

lag number in autocorrelation function

identity matrix

moment of inertia about longitudinal, lateral, and vertical

body axes, respectively, kg-m 2

product of inertia, kg-m 2

quantity at ith interval

rolling, pitching, and yawing moments, respectively, N-m

mass, kg

number of data points

number of unknown parameters

roll rate, rad/sec or deg/sec

pitch rate, rad/sec or deg/sec

I 2

2 pV , kinetic pressure, Pa

autocorrelation function of residuals

squared multiple correlation coefficient



yaw rate, rad/sec or deg/sec

r •

3Y
partial correlation coefficient

rjy. 1
partial correlation coefficient after variable

model

S wing area, m 2

Sjy,Sjj,Syy sum of squares defined by equation (12)

s standard error

s 2
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t
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X

x
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y*

z
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a
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e
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r
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x I is included in

estimated variance

thrust components along longitudinal and vertical axes,

respectively, N

time, sec

airspeed, m/sec

variance operator

N x n matrix of independent variables

independent variable in regression equation

N x I vector of dependent variables

dependent variable in regression equation

dependent variable used in intermediate step of stepwise regression

independent variable used in intermediate step of stepwise regression

angle of attack, rad or deg

confidence level with F-statistic

sideslip angle, rad or deg

aileron deflection, tad or deg

elevator deflection, rad or deg

rudder deflection, rad or deg

equation error (measurement noise)

n × I vector of unknown parameters
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v I ,v 2

P

2

jth element of vector of unknown parameter

pitch angle, rad or deg

degrees of freedom for numerator and denominator of F-statistic,

respectively

air density, kg/m 3

standard deviation

variance of measurement noise

Subscripts:

j index of parameters and independent variables

_th model equation

0 trimmed condition

Superscripts:

T transpose matrix

-I inverse matrix

Abbreviations:

LS least squares

ML maximum likelihood

MSPE mean square prediction error

MSR modified stepwise regression

PRESS prediction sum of squares

RSS residual sum of squares

Aerodynamic derivatives referenced to a system of body axes with the origin at

the airplane center of gravity:
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The derivatives C'm,0, C'm' "''' Cm 2 are defined in appendix A.

A bar over a symbol denotes the mean value. A dot above the symbol denotes a

derivative with respect to time. A circumflex (^) denotes an estimated value.

LINEAR REGRESSION

The linear regression technique is employed to estimate a functional rela-

tionship of a dependent variable to one or more independent variables. It is

assumed that the dependent variable can be closely approximated as a linear

combination of the independent variables. For airplane models, the resultant

aerodynamic force and moment are expressed by means of the aerodynamic model

equations which may be written as

y(t) = 0 0 + Glx1(t) + ... + Gn_lXn_1 (1)

In this equation, y(t) represents the resultant coefficient of aerodynamic

force or moment (the dependent variable), G 1 to Gn_ I are the stability and

control derivatives, G O is the value of any particular coefficient cor-

responding to the initial steady-flight conditions, and x I to Xn_ I are

the airplane state and control variables (the independent variables). The

variables x I to Xn_ I may also include any combination of the state
and control variables.

Let us assume that a sequence of N observations on both y and x has

been made at times t 1, t 2, ..., tN. If the measured data are denoted by

y(i) and x1(i), x2(i), ..., Xn_1(i) where i = I, 2, ..., N, then these data

can be related by the following set of N linear equations:

y(i) = G 0 + G1x1(i) + ... + Gn_iXn_1(i) + e(i) (2)

Because equation (I) is only an approximation of the actual aerodynamic rela-

tions, the right-hand side of equation (2) includes an additional term e(i),

often referred to as the equation error. For N > n, the unknown parameters

can be estimated from the measurement by the method of least squares as

e = (XTX) -IxTY (3)

where _ is the n x I vector of parameter estimates, Y

vector of measured values of Y(i), and X is the N x n

independent variables.

is the N x 1

matrix of measured



The properties of the least-squares (LS) estimates dependupon the postu-
lated assumptions concerning the measureddependent variables and equation
errors. These assumptions are

I. £ is a stationary vector with zero meanvalue

2. E is uncorrelated with X

3. X is a deterministic quantity (i.e., the state and input variables

are measured without errors)

4. e(i) is identically distributed and uncorreiated with zero mean and

variance o 2

Under assumptions I and 2, the LS estimates are unbiased. When assumptions 3

and 4 are considered, it can be shown that the LS estimates are also consistent

and efficient (for example, see refs. 10 and 11). The covariance matrix of

parameter errors has the form

..{<8- - :

For the estimate of this covariance matrix, o 2

(4)

is replaced by its estimate

N

s2 = 1-/-- 72(i)
N n i=I

(5)

where

_(i) = y(i) - y(i)

and

A

y(i) = _0 + G1x1(i) + "'" + _n-lXn-1 (i) (6)

When assumptions I to 4 are extended by the assumption of a normal distri-

bution for E(i), confidence intervals for the estimates can be found and some

hypothesis tests can be employed. (See ref. 12.) Two of these tests will be

used later in the report. The first one represents the test of overall regres-

sion with the null and alternative hypothesis formulated as

H0 81 O2 = 0: = = ... = Gn_ 1

8

=

H I : not all Gj 0



The null hypothesis is rejected if F > F(vi,v2,_ ) whereP

_TXTy_ N__= (7)
2

(n - 1)s

is a random variable having an F-distribution with the number of degrees of

freedom v I = n - I and v2 = N - n and where F(vI,V2,_ P) are the tabu-
lated values of the F-distribution for the significance level _ .

P

The second test is of the significance of individual terms in the regres-

sion (a partial F-test). The hypotheses are

H : G. = 0
0 3

HI: 8j # 0

and the testing criterion is

2

%j

_p: _2c8j
(8)

The null hypothesis is rejected if

v2 = N - n. In equation (7),

Fp > F(vI,V2,_ P) where v I = I and

N
I

:_ _ y_i_
i=I

in equation (8), s2(Gj)^ is the variance estimate ofand, @j.

The random variable F specified by equation (7) is related to the

squared multiple correlation coefficient

R2 = zi[_ci__ _]2:_TxTY _ N_2

Zi[Y_i_ _ _]_ yT__N_2
(9)

by the equation

9



2N - n R
F = (10)

n - 1 1 - R2

In an actual experiment, assumptions 1 to 4 and the normality of e(i)

are not generally met. Because of the measurement errors in the independent

variables, the LS estimates are asymptotically biased, inconsistent, and inef-

ficient. (See refs. 10 and 11.) However, experience with flight data indi-

cates that the LS estimates still could be accurate enough and even could be

comparable to those from the maximum likelihood method, which is expected to

give consistent and asymptotically unbiased results. It is also believed that

the F-tests can be formed with real flight data because of the robustness of

the F-statistic with respect to the normality assumption. On the other hand,

equation (4) for the covariance matrix usually gives optimistic values for the

parameter variances.

STEPWISE REGRESSION

The stepwise regression is a procedure which inserts independent variables

into the regression model, one at a time, until the regression equation is

satisfactory. The order of insertion is determined by using the partial corre-

lation coefficient as a measure of the importance of variables not yet in the

regression equation. The procedure starts with the postulation of a regression

model given by equation (2). The first independent variable from the postu-

lated model is chosen as the one which is most closely correlated with y. The

correlation coefficient is given by the expression

S ,

r. = 3Y (11)
1/2

]Y (S.S )
33 YY

where

S _- (12a)

1S" = N_Ix]3 j(i) - xj
(12b)

s = [ [yci)- }]2
YY N

(12c)

Xj = _ xj(i)
(12d)

I0



If x is selected as x_, then the model
3 I

y = G O + @ixi + e
(13)

is used to fit the data. A new independent variable z 2 is constructed by

finding the residuals of x 2 after regressing it on x I, that is, the resid-
uals from fitting the model

x 2 = a 0 + alx I + e
(14)

The variable z 2 is, therefore, given as

A A

z 2 = x 2 - a 0 - alx I (15)

Similarly the variables z 3, z 4, ..., z are formed by regressing the vari-
able x 3 on x I , x 4 on Xl, and so f_h. A new dependent variable y* is

represented by residuals of y regressed on x I using the model given by
equation (13); that is,

^ ^

y* = y - 0 0 - GIX I
(16)

In the next step, a new set of correlations which involve the variables

y*, z2, z3, ..., Zn_ I is formulated. These partial correlations can be

written as r . meaning the correlations of z and y* are related
]y.l 3

to the model containing the variable x I . The expression for the partial cor-

relation coefficients rjy.1 is given by equations (11) and (12) after replac-
ing y and x. by y* and z.. The next variable added to the regression

3 3
model is the variable x whose partial correlation coefficient was the great-

3
est. If the second independent variable selected in this way is x2, then the

third stage of the selection procedure involves partial correlations of the

form rjy.12; that is, the correlations between the residuals of xj regressed

on x I ana x 2 and the residuals of y regressed on x I and x 2 .

At every step of the regression, the variables incorporated into the model

in previous stages and a new variable entering the model are reexamined. The

partial Fp criterion given by equation (8) is evaluated for each vari-
able and compared with the preselected percentage point of the appropriate

F-distribution. This provides a judgment on the contribution made by each

variable. Any variable which provides a nonsignificant contribution (small

value of F_) is removed from the model. A variable which may have been
P

the best single variable to enter at an early stage may, at a later stage, be

superfluous because of the relationship between it and other variables now

in the regression. The process of selecting and checking variables continues

until no more variables will be admitted to the equation and no more are

11



rejected. The complete computing scheme for the stepwise regression can be

found in reference 12.

MODEL STRUCTURE DETERMINATION

A model for a system is an operator which converts the given input to the

system into the response of the system. In this report, a model will be

described by a model structure (analytical representation of a model) and model

parameters (coefficients in the analytical representation). The correct model

of an airplane is, in general, unknown and unknowable. Therefore, a major

problem in system identification is the selection, from measured data, of an

adequate model. An adequate model is a model which sufficiently fits the data,

facilitates the successful estimation of unknown parameters, and has good pre-

diction capabilities.

For the model structure determination procedure, it will be assumed that

(a) the general equations of motion for a rigid body adequately define

the airplane motion

(b) the model for the aerodynamic force and moment coefficients can

be represented by multivariable polynomials in response and control

variables; the parameters in these equations are the coefficients of

the Taylor series expansion around the values corresponding to the

initial steady-state flight

(c) some of the linear terms in the Taylor series expansion make the

largest contribution to aerodynamic functions, followed by the

higher order terms

The second assumption is an extension of the concept of airplane stability

and control derivatives in the linear aerodynamic model equations. The third

assumption will result in a constraint on the selection of significant terms in

the regression equation. This constraint is explained in the following para-

graph and substantiated by the examples presented. It also provides infor-

mation about the performance of a linear model.

The determination of an adequate model using the stepwise regression

includes the three steps: the postulation of terms which might enter the final

model, the selection of an adequate model, and the verification of the model

selected. The postulated model forms for the longitudinal and lateral aerody-

namics are presented in appendix A. The computing scheme for the selection of

an adequate model is modified from that in reference 12. The linear terms in

the model are examined first. They enter the regression according to their

partial correlation coefficients and are kept in the model regardless of the

value of F • This means that during this part of the procedure no hypothesis

testing is _pplied. When all linear terms are included, the procedure contin-

ues as for the ordinary stepwise regression. The nonlinear terms postulated

are searchedand the null hypothesis concerning their significance, and the

significance of all terms already in the model (linear and nonlinear), is

12



tested. The stepwise regression technique with the constraint mentioned will
be further referred to as the modified stepwise regression (MSR).

As indicated in the previous chapter, the tabulated values of
F(1,N-n,ep) and F(n-l,N-n,__) dependon the numberof data points, the
numberof parameters in the m_Pdel,and the selected risk level F. For
N > 100, the effect of n on the tabulated values of F is small; there-

fore, F(I,N-n,0.01) is taken as 7, regardless of N and n. The tabu-

lated values of F(n-1,N-n,__) for N > 100 and _D = 0.01 vary approxi-
mately from 3.0 to 2.3. It _s indicated in referenc_ 13, however, that, in

order for the model selected to be regarded as a satisfactory predictor, the

observed F-values not only should exceed the selected percentage point of the

F-distribution but should be about four times the selected percentage point.

Based on these observations, the value of F used for comparison is selected

as equal to 12.

Experience with several test runs showed that the model based only on the

statistical significance of individual parameters on the regression equation

can still include too many parameters. It is, therefore, recommended that more

quantities and their variations be examined as possible criteria for the selec-

tion of an adequate model. Several quantities which could be examined include

the following:

(a) The computed values of F for each parameter in the model. Because

Fp is the inverse of the relativePparameter variance, it should have the maxi-

mum values for an adequate model.

(b) The computed value of F, which is given as the ratio of regression

mean square to residual mean square. The model with the maximum F-value has

already been recommended in reference 7 as the "best" one for a given set of

data.

(c) The value of the squared multiple correlation coefficient R 2 which

can be interpreted as measuring the proportion of the variation explained by

the terms other than G O in the model. However, the improvement in R 2 due

to adding new terms to the model must have some real significance and should

not r_flect only the effect of the increased number of parameters. The value

of R- varies from 0 to I (perfect fit), Its Variation is often expressed in

percent.

(d) The value of the residual sum of squares (RSS) defined for the

£th model as

N

Rss [y i) 9(i) ]2
i= 1

(17)

This value is the measure of the "goodness of fit" and, for its improvement,
the same note applies as that for R-.

13



(e) The value of residual variance s2(e) estimated from

s2(e ) : RS____S (18)N - n

which should be comparedwith an unbiased estimate of the variance _2(e), if
available.

(f) The residuals _(i). For an adequate model, their time history
should be close to a randomsequencewhich is uncorrelated and Gaussian.

Optimal values of these quantities mayprovide criteria which will guaran-
tee good fit to the data, but they will not necessarily select a model which is
a good predictor. However, there is a rule commonlyused in choosing a model
which will be a good predictor. It is knownas the "principle of parsimony,"
and it can be stated (see ref. 14) as follows: _iven two models fitted to the
samedata with residual variances _1(e) and c_2(e) which are close to each
other, choose the model which involves the smaller numberof parameters. The
prediction sumof squares (PRESS)criterion for the selection of a parsimonious
model is proposed in reference 15. The PRESS, associated with the _th subset

of model parameters, is defined as

PRESS =

N

i=I
{y(i) - y[ilx(1), ..., x(i - I), x(i + I), ..., x(N)]_} 2

where y(il...)_ is the estimate of E{y(i)} using the _th subset and exclud-

ing the ith observation. Some notes on the development of this criterion, its

interpretation, and its computation are given in appendix B. In the following

examples, the R 2, F, and PRESS values computed at each entry to the MSR pro-

cedure will be used for model selection. These values will be complemented by

the estimates of autocorrelation functions of residuals.

Additional checks on the accuracy of estimated parameters and the check of

prediction qualities of the selected model are considered verification of the

model. The parameter estimates can be compared with the results from repeated

measurements under the same conditions; that is, the same flight conditions and

input forms. Further the least-squares estimates can be compared with esti-

mates using different techniques but the same data and model. For this com-

parison, the maximum likelihood method (e.g., see ref. 16) is recommended

because of its optimal asymptotical properties. Finally the parameter esti-

mates must have realistic values and should be in an agreement with wind-

tunnel results and theoretical predictions.

14



EXAMPLES

In the following three examples, the modified stepwise regression was

applied to various sets of simulated and measured data of a general aviation

airplane. In all examples, the airplane equations of motion from appendix A
were used.

Example I

The purpose of this example is to demonstrate the sensitivity of the MSR

and the criteria for the model selection to the measurement errors of the

dependent and independent variables in the regression equation. The simulated

data used were created by a fourth-order Runge-Kutta integration with a step

size of 0.001 sec. Equations for the aerodynamic model contained certain non-

linear terms. The input variables 6a and d r were taken from flight mea-

surements. The time histories of the input and some response variables are

plotted in figure I. From these data, the three aerodynamic coefficients

Cy, C , and C n were computed.

In the next step, the simulated responses 8, _, p, and r, and the

aerodynamic coefficients mentioned in the preceding paragraph, were corrupted

by a Gaussian noise, which had a zero mean and the standard errors given in

table I for the three cases considered. Case I represents the data where only

the dependent variable in the regression is in error. In cases 2 and 3, the

state variables are also in error. The values of simulated measurement errors

are close to those estimated from real flight data (case I) and from ground

calibration of an instrumentation system (case 2).

Models which were determined to be adequate yielded the parameter esti-

mates and values of the squared multiple correlation coefficients which are

listed in table II for all three cases_ Also presented are the parameters of
the true model. The F, PRESS, and R values in case I are plotted in fig-

ure 2 against the entry number into the MSR algorithm. The computed F-values

for all three coefficients are much higher than the recommendation of four

times the tabulated value of three (i'e., 12) thus indicating the significance

of the regression for all models. The first computed values of PRESS from all

data points (N = 351) showed almost the same variation with the increased num-

ber of parameters in the model as the RSS. This possibility is pointed out in

appendix B. Improvement in the PRESS criterion for the model selection was

achieved by reducing the number of data points for computing the PRESS. The

PRESS values in figure 2 were obtained from every tenth data point of the given
set.

For the data set of case I, the MSR performed well. In the side-force

equation, the best model was the linear model completed by the nonlinear

term pc. This model was selected at the minimum of PRESS and the second

maximum of F. The first maximum of F indicates only the strong effect of

the parameter Cy in the equation for Cy, which is also reflected by

8 2 2
R 2 = 97.2 percent in the first entry. The two nonlinear terms r_ and

in the true model were not selected, because the other terms in the model have

15



already explained 98.9 percent of the variation of Cy. It was observed,
however, that the r_2 term was the next to enter the chosen model. None of
the estimated parameter values was statistically different from the true model.

In the rolling-moment equation, the model selected was that of the true
model, with all parameters the sameas the true values. The best model cor-
responds to the extreme values both in F and PRESScriteria. In this equa-
tion, the linear term 8 was not an element in the true model. Thoughcon-r
strained to enter the regression (being a linear term), the 8 term was laterr
eliminated as insignificant to the overall best model.

For the yawing-momentequation, an adequate model, according to the
F-criterion, contains six of the seven terms in the true model, with all param-
eters within 2_ of their true values, except C . When,based on then

P_
minimumof the PRESSvalue, the remaining term r_ is included (entry number
seven), the value of C is Changed within I_ of its true value, and R2

n
P_

improves from 83.4 to 85.0 percent. It was also seen from the results that the

partial F-value for the r_ term was equal to or greater than the partial

F-values fo-=r t=wo of the linear terms_ in this example, the PRESS criterion

performs better than the F-criterion.

Although the stepwise regression assumes, in principle, that the measure-

ment noise is present only in the dependent variable, noise was also added to

the state variables in two examples (cases 2 and 3). The parameter estimates

in the higher noise environment deviated slightly from the true values. As

seen from table II, the chosen model structures in some runs were also slightly

different from those in case I, reflecting the overall higher noise to signal

ratio and an effort by the MSR to fit the noise. Furthermore, the noise in

state variables decreased the uniqueness of the selection in both the F and

PRESS criteria (less distinct extreme values) and, in some runs, shifted the

extreme values of these criteria apart. The data in all three cases were also

analyzed by the stepwise regression without constraint on the postulated linear

terms in the model. Adequate models determined by this approach are summarized

in table III. It is apparent from these results that the measurement errors in

the data can cause, in some cases, the determination of an incorrect model if

the constraint in the algorithm is removed. The examples presented substan-

tiate, therefore, the use of the MSR rather than the stepwise regression with-

out constraint.

Example 2

In this example the MSR technique for model structure determination was

applied to the measured data. The data, sampled at 0.05 sec, represent a lat-

eral response of the airplane at _ _ 20 ° . The time histories of the input and

some response variables are plotted in figure 3. The response variables indi-

cate that the airplane exhibits a limit-cycle type of lateral motion which is

also strongly coupled with the short-period longitudinal mode. In figure 4,

the F, PRESSi and R 2 values for the lateral coefficients examined are plot-

ted against the number of entry into the MSR.
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An adequate model for the side-force coefficient was selected at the
eighth entry where PRESShas its minimumand F the second maximum. For the
coefficient C£, the F-criterion indicates an adequate model at the sixth
entry, the PRESSat the ninth. The difference in R at these two entries is
only 2 percent. Therefore, in consideration of the principle of parsimony, the
model with the smaller numberof parameters was selected. For the coefficient
Cn, the changes in the F, PRESS,and R values after the fifth entry are
apparent. These changes indicate that the linear model (first five entries) is
completely inadequate and that somenonlinear terms must be included. An ade-
quate model was selected at the seventh entry where the PRESSvalues have their
minimumand F-values their first maximum. Comparisonsbetween measuredand
computedtime histories of Cn for the linear model and for an adequate model
are presented in figures 5 and 6, respectively. Also included are the residual
time histories and the autocbrrelation functions of residuals. For the linear
model, the fit to the data is poor. By adding two nonlinear terms pe and re,
the fit was improved substantially and the autocorrelation function of
residuals was close to that for the uncorrelated randomvariable.

The variables included in the adequate models for the three coefficients
are summarizedbelow, in the order that they entered the model, for

2 2
Cy: 8, 6r, r, 6 , p, pc, re , ea

CZ: 8, P, _ , r, pea

Cn: 6a, P' 8, 6 r, r, p_, re

In figure 7, the measured output time histories are compared with those pre-

dicted by using the model for Cy, C z, and C n determined by the MSR. The

agreement in these time histories is good except for the yawing velocity, which

could be caused by insufficient excitation of this variable.

The next step in the airplane identification included estimation of the

parameter by using the maximum likelihood method of reference 16 with the model

structure determined by the MSR. In this estimation process, the nonlinear

parameters were kept fixed on the least-squares estimates. Any attempt to

estimate the whole set of aerodynamic parameters failed because of a divergence

in the ML algorithm. The resulting ML and MSR estimates are presented in

table IV. Some differences in the estimated parameters from both methods

exist, mainly in the damping derivative C£ and the cross derivative Cn "
P P

All these differences might be caused by undetected modeling error and by the

correlation between linear and nonlinear parameters. Simulated studies of the

flight regime analyzed also showed that the data were very sensitive to even

small changes in certain parameters. In figure 8, the measured output time

histories are compared with those computed by the ML method.
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The model structures for the three coefficients C , C_, and C were
n

also determined by the stepwise regression without cons_rain_. The resulting

models included the following variables for:

Cy: _, _2, 6r ' _3

C_: _, _3, _2 P, 6a, , P_

Cn : P_' _3, P, 6r ' _, r_

As in the previous example with simulated data, these models are different from

those determined by the MSR. In models for the second and third coefficients,

for example, the linear parameters C_r and C n are missing. When the newr

aerodynamic model equations were used for prediction of the output variables, a

divergent motion of the airplane resulted. The variables selected by the first

MSR gave the model which described the motion of the airplane very well. The

variables selected by the stepwise regression without constraint fit the time

histories of Cy, C_, and C n equally well, but failed to predict the air-

plane motion correctly.

The physical meaning of some of the estimated nonlinear parameters can be

assessed from figure 9, where the three linear parameters estimated from five

test runs are plotted against angle of attack. The values of parameters

Cy , C_ , C n , and Cn 2 (slopes of the solid lines) agree quite well
P_ P_ P_ p_

with the trend in changes of Cy , C_ , and Cn with _. Also plotted in
P P P

figure 9 are the ML estimates of the parameters considered by using adequate

models determined by the MSR.

Example 3

In the last example, the data from a longitudinal large-amplitude maneuver

were analyzed. The measured time histories of the main output and input vari-

ables are plotted in figure 10. The MSR regression selected the same form of

an adequate model for both coefficients C z and Cm. The terms included in

these models are a, 2, q, q_, and 6 e. The resulting parameters and their

variations with the angle of attack are plotted in figure 11. These results

are compared with the parameters obtained from 21 transient maneuvers initiated

from prestall and poststall steady-state flight regimes (triangle symbols in

fig. 11). In these 21 maneuvers, the excitation of the motion was considerably

smaller than that in the maneuver shown in figure 10.

The models for the large-amplitude maneuver include the linear variation

of some parameter values with _. These variations agree with the trend given

by the results from the small-amplitude maneuvers. This agreement was improved
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by partitioning the data from the large-amplitude maneuver into six subsets

according to the values of e. The first subset included the data with e

varying from its minimum value to 4 ° • The second subset consisted of data

corresponding to _ between 4 ° and 8 ° , and so forth, until the sixth subset

was filled with data corresponding to _ between 20 ° and 24 ° • This partition-

ing was then repeated, starting with the subset of data values for e between

2 ° and 6 ° and ending with a between 22 ° and 26 ° • An adequate model was

determined for each data subset by applying the MSR. The resulting parameters

are plotted in figure 11 (closed symbols). The parameters from the partitioned

data agree well with the results from the 21 maneuvers. They, therefore, more

closely describe the variations of the parameters with u than the estimates

from the complete set. This indicates a preferable way of analyzing large-

amplitude maneuvers.

Presented in figure 12 are the standard errors in C Z and C m as esti-

mated from the residuals. The standard errors for partitioned data and small-

amplitude maneuvers are in good agreement. The standard errors for the whole

set of data points in the large-amplitude maneuver are greater than the average

values from the partitioned data. This might be caused by unexplained modeling

errors in the regression equation for C Z and C m. The number of data points

in each subset is apparent from figure 13.

CONCLUDING REMARKS

A procedure for determining airplane models from flight data has been

developed. It starts with the airplane model formulation which uses the gen-

eral equations of motion and postulated aerodynamic equations. The aerodynamic

coefficients are expressed in terms of multivariable polynomials in input and

output variables. The procedure is based on the ordinary stepwise regression

which has been modified by adding a constraint to the parameter selection and a

prediction sum of squares (PRESS) criterion for the model structure determina-

tion. To finalize the procedure, some steps in model verification have been

suggested.

The following are the main conclusions drawn from research work covered by

this report:

I. The examples with simulated and real flight data showed that the modi-

fied stepwise regression can determine an airplane model either closer to the

true model (simulated data) or with better prediction capabilities (real data)

than the stepwise regression without a constraint.

2. The PRESS criterion, in combination with computed F-values and values

of the multiple correlation coefficient, increased the ability of the procedure

to select a parsimonious model from measured data. For computing of PRESS

values, a limited number of data points should be used rather than the whole

set. With the increase of number of data points, PRESS approaches the residual

sum of squares, which cannot distinguish between the parsimonious and overfit-

ted model.
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3. In principle, the stepwise regression assumesthe measurementnoise
only in the aerodynamic coefficients (dependent variables in the regression
equations). The results from the limited amount of simulated data show that
noise levels in the state variables, corresponding to the values obtained from
ground calibration of an instrumentation system, do not influence the deter-
mination of an adequate model. For the higher noise to signal ratio, the model
selected can include terms which compensatefor the noise in outputs rather
than for the airplane dynamics.

4. Where the modified stepwise regression was applied to flight data in
the high-angle-of-attack regime, the nonlinear terms in the model brought the
residuals closer to the uncorrelated randomsequenceand the parameters asso-
ciated with these nonlinear terms had physical meanings.

5. The modified stepwise regression, in its present form, can also be used
for the analysis of large-amplitude maneuvers. For these maneuvers, the data
should be partitioned according to variables which influence the existence of
nonlinear terms in the aerodynamic model equations (e.g., the angle of attack).

6. The model determined by the modified stepwise regression can be
accepted if it closely predicts the airplane response and if the parameters in
the model are close to the maximumlikelihood estimates based on the samemodel
structure.

The procedure presented represents the first step toward the determination
of an overall model of an airplane from flight data. Whenproperly used it can
provide results for better understanding of airplane aerodynamics at high
angles of attack and for global stability and control analysis of an airplane
at these flight conditions.

Langley Research Center
National Aeronautics and Space Administration
Hampton,VA 23665
August 3, 1981
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APPENDIXA

AIRPLANEEQUATIONSOF MOTION

The airplane equations of motion are referred to the body axes. They are

based on the assumptions that

(I) the airplane is a rigid body

(2) the effects of spinning rotors are negligible

For the stepwise regression method, the equations of motion can be formu-

lated as

mg ax _ = Cx
is

mg_ ay = Cy

qS

-S \ Z - = Cz
q

I--_X Y - IZ c_pq r C_
qSb - IX qr - + =

IXZ, 2 Ipr - c_r _ p2 = Cm

qSb - IZ pq- iz qr

= C
n
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APPENDIXA

The aerodynamic coefficients are postulated as functions of the state and
input variables and their combinations as follows:

of

Cm, as functions
5 6 7 8

(a) The longitudinal coefficients Cx, Cz, and

2 2 2, 3 46e, _, 6 , _ _ , _ ,a, q, _ , q_, 6e

(b) The lateral coefficients Cy, C_, and Cn as functions of

62 2 6a26, P, r, 6 a, 6 r, _, p_, r=, 6a_, 6r_, , p 2 r_ 6r _2

62 _3, 64 _5 _32 _3 2 3• • • 0 _, _• _ •

The variables in both model forms represent the increments with respect to

their trim values. In the equation for the pitching-moment coefficient• the

term _ was not explicitly included to avoid possible identification prob-

lems. The parameters in this equation are related to the parameters in the

functional relationship

e _

C = C (_,_,S,q,6e)_m m

by the expressions (see ref. 17)

C ' = C z 2V 2
m,0 Cm,0 ,0 + gc cos 80

C' = C + BC C
m m m. Z

= C 11 + BCz 1
C' C +

m m m_q q q

C' = C + BC C

m 6 m 6 m._ Z 6
e e e

C' = C + BC C

m j m_j m._ Z j

(j = 2, 3, ..., 8)

C' = C + BC C
m m m. Z
q_ q_ _ q_
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APPENDIXA

C' = C + BCm C Z
m 6 m 6

e e e

c_ 2 = Cm_2 + BCm&Cz_2

C_2 = %_2 + BCm. Cz_2

where

4m
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APPENDIXB

PREDICTIONSUMOF SQUARESCRITERION

The linear regression model has the form

Y=X0+ e (B1)

where G is a vector of unknownparameters and e is a randomvector inde-
pendent^of X and having zero meanand covariance _I. If you know the esti-
mates 0, you can predict the value of a future randomvariable y with the
mean x0 and variance _2 where x is a row vector of the matrix X con-
taining the values of the independent variables associated with the future
observation.

A predictor y will be considered as an optimal predictor if the expected
value

_{y_9}2 (B2)

has minimum value. Equation (B2) is known as the mean square prediction error

(MSPE). It can be expressed as

E{y-9}2- E{y-9- x0÷ x0}2

= E{( 9 - x_) 2 + (y - x@) 2 - 2( 9 - x_)(y - xG)}

= E{9-_}2 ÷ (B3)

Furthermore

E{_ - xe}2 = E{[_ - _.(9)]2+ [_(9) _ xe]2 ÷ 2[? - E(_)][E(_) - _]}2

= Var{9} + [E{y} - x0] 2 (B4)
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After substituting equation (B4) into equation (B3)

MSPE = 2 + Var{_} + [E{y} - X(9] 2 (B5)

which means that

MSPE = Variance of the response

+ Variance of the prediction

+ Squared bias of the prediction

It is shown in reference 18 that the addition of a variable to the predic-

tion equation almost always increases (and never decreases) the variance of a

predicted^ response. This means that for two models 9_ = x!01, and 9_ = x2 _2'
where G I is a n × 1 vector and 82 is a (n + I) I -vector of estimated
parameters

Var{92} >_ Var{Yl} (B6)

From equations (B5) and (B6), it can be concluded that, for a model with a

redundant number of parameters, the MSPE will increase from its minimal value

because of the increase in Var{_}. For the incomplete model, the MSPE will

increase because of the bias error in prediction.

For the practical implementation of the MSPE as a measure for the selec-

tion of a parsimonious model, the prediction sum of squares (PRESS) criterion

was formulated in reference 15. It has the form

N

PRESS : _ [y(i) - 9[ilx(1), ..., x(i- I), x(i + I), ..., x(N)]} 2 (B7)
i=I

which means that the PRESS uses (N - I) data points for the estimation and one

data point for the prediction. Equation (B7) is, however, not very convenient

for computing of PRESS. A more efficient scheme is proposed in reference 15

using the expression

PRESS _ [y(i) -,^...9(i)]2= (B8)

i=I 1 - var_z_i_
2

G

where y(i) is now based on all the data points.
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APPENDIXB

The second term in the denominator of equation (B8) can be written as

-I
Var{@(i)} = xi<XTX> xiT

2
o

(B9)

The behavior of equation (B9) with the increased number of data points can be

examined from its limit as N ÷ _. This limit can be formulated as

lim Var{@(i)} lim x i X X x.
2 1

N_ N--_N xTx x ol
= 0

I--I
if lim/1 xTx does exist. From equations (B8) and (BI0), it is then

N+_\ N

apparent that the PRESS approaches the RSS for increasing number of data

points •

(BI0)
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TABLEI.- STANDARDERRORSOF SIMULATEDMEASUREMENTNOISE

Variable

Standard deviation of measurement
noise of variable

Case 2Case I

Cy 0.0O8

C£ .OO5

Cn .003

8, rad 0

_, rad 0

p, rad/sec 0

r, rad/sec 0

0.008

.005

.003

.002

.002

.006

.003

Case 3

0.008

.005

.003

.010

.010

.030

.015
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TABLE II.- EFFECT OF MEASUREMENT NOISE ON MODEL STRUCTURE AND ON

PARAMETER ESTIMATES FOR SIMULATED DATA

Parameter

Cy,0

C

Cyp

CY r

CY6a

CY6r

Cypu

CYra

Cy_2

R 2 , %

C_,0

c_8

c_p

C_ r

C_6a

c_6r

R 2 , %

Cn, 0

Cn8

Cnp

Cn r

Cn6r

Cn6a

Cnpu

C
n
ra

R 2 , %

True value

0.0069

-.555

-.103

.88

-.075

.05

1.34

-51

.47

-0.00042

Case I

0.0088

-.557

-.I03

.795

-.077

.050

1.44

98.9

-0.00027

Estimate,

Case 2

0.0088

-.556

-.102

.710

-.074

-.056

1.60

98.7

-0.0011

Case 3

0.0084

-.553

-.101

.640

-.069

98.4

-.11 -.108

-,15 -.145

• 21 .197

-.09 -.092

0

1.0 1.05

95.2

-.I07

-.141

.255

-.094

.92

95.2 94.6

0.00099

.03

-.063

-.084

.013

-.033

.77

-1.33

0.00109

.0296

-.063

-.064

.013

-.032

.359

-1.34

85.0

0,00102

.0270

-.064

-.086

.016

-,031

.856

.050

1.53

84.1 83.0

0.0012

-.105

-.139

.228

-.093

-.003

.87

0.00105

.0260

-.065

-.090

.016

-.031

.838
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TABLE III.- EFFECT OF MEASUREMENT NOISE ON MODEL STRUCTURE FOR SIMULATED DATA

DETERMINED BY STEPWISE REGRESSION WITHOUT CONSTRAINT

Coefficient

Case

Cy c£ cn

True model
8, p, r, _a' _ 'r

2 2
P_e r_ t

8, r, _r' 6 ,a

2
p, pu, ra

8, 6r' r, _a'

2
pc, p, ra , 82

8, 6 r, r, 6 a,

83 6 2
I

a

8, p, r, 6 , pe
a

8, p, 6 , pc, r
a

8, p, 6 , pu, r
a

8, p, 6 , pC,
a

r, _ 2
r

8, p, r, 6
r'

6
a' pu, ra

_r' _a' P'

p_, 8, r_

6 , 6 , p,
a r

pu, 8, ru
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TABLE IV.- PARAMETERS AND THEIR STANDARD ERRORS ESTIMATED FROM

MEASUREMENTS USING TWO ESTIMATION METHODS

MSR ML

Parameter Estimate Standard error Estimate Standard error a

o s¢8) g s¢5)

Cy,O

CYi3

Cg
P

Cg
r

Cy
6

a

%%
r

Cy
p_

Cy 2
r_

Cy 2
(I

C_,0

c1_

cj_
P

c£
r

el 6
a

ci
pcc

Cn,0

C

no
C

n
P

C
n

r

C

n6
a

C

n6
r

C
n

p_
C

n
r_

0.0064

-.567

-.102

.88

-.074

.051

1.33

-51

.47

-0.00013

-.116

-.152

.21

--.091

1.03

-0.00086

.0316

-.0616

-.071

.013

-.033

.77

-I .3

acram_r-Rao lower bound.

bFixed values.

0.0024

.0048

.041

.0066

.0040

.037

2.3

.052

0.0021

.0042

.036

.0058

.033

0.00097

.0019

.017

.0027

.0016

.015

.14

0.011

-.57

-.01

1.0

-.14

.025

bl.33

b-51

b.47

0.0005

-.1215

-.106

.39

-.076

b1.03

-0.00042

.0300

-.0392

-.094

.0225

-.027

b.77

b-1.3

0.0024

.013

.020

.16

.027

.019

0.00024

.00096

.0020

.016

.0017

0.000061

.00068

.00093

.0050

.00082

.0012
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FigUre 7.- Time histories of Simulated data.
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coefficient at different entries of MSR algorithm; simulated data.
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